Print this page Email this page
Users Online: 274
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 11  |  Issue : 1  |  Page : 3

Electrocoagulation process using aluminum electrodes for treatment of baker's yeast industry wastewater


1 Department of Environmental Health Engineering, School of Health; Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
2 Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
3 Department of Environmental Health Engineering, School of Health, Iran University of Medical Sciences, Tehran, Iran

Correspondence Address:
Abbas Khodabakhshi
Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijehe.ijehe_28_20

Rights and Permissions

Background and Aims: Severe contamination with organic compounds and very high color is characteristic of yeast industry wastewater. Discharging this wastewater into the environment has adverse effects on the environment. The present study was conducted to determine the efficiency of the electrocoagulation (EC) using aluminum electrodes for the removal of color, turbidity, and chemical oxygen demand (COD) from the baker's yeast industry wastewater. Materials and Methods: In this experimental study, the effect of current densities (60, 80, 100, and 120 A/m2) and reaction times (15, 30, 45, and 60 min) using aluminum electrode was investigated on removal efficiencies of COD, color, and turbidity. The pilot consisted of a reactor with a useful volume of 2.5 l of epoxy glass, a direct current power supply, and aluminum electrodes of 8 cm × 8 cm in diameter. Results: The highest removal efficiencies were obtained to be 83% for COD, 93% for color, and 96% for turbidity at density of 80 A/m2 and 45-min contact time (pH = 7). Under these conditions, the power and electrode consumption was 16.89 kWh and 94.3 g/m3, respectively, and the treatment cost of wastewater was estimated to be 1.5 $ per each cubic meter. Conclusion: The results showed that EC process using aluminum electrode is an appropriate and effective method for removing color, turbidity, and COD from baking industry wastewater.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2063    
    Printed104    
    Emailed0    
    PDF Downloaded292    
    Comments [Add]    
    Cited by others 1    

Recommend this journal