Print this page Email this page
Users Online: 297
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 

Previous article Browse articles Next article 
ORIGINAL ARTICLE
Int J Env Health Eng 2020,  9:2

Biological excess sludge reduction in adsorption/bio-oxidation process by enhancing predators' growth


1 Department of Agriculture Sciences, Islamic Azad University, Ardestan Branch, Ardestan, Iran
2 Department of Environmental Health Engineering, School of Health; Environment Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
3 Environment Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
4 Esfahan province Water and Wastewater Company, Isfahan, Iran

Date of Submission03-Dec-2019
Date of Acceptance23-Dec-2019
Date of Web Publication31-May-2020

Correspondence Address:
Dr. Mohammad Mehdi Amin
Environment Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijehe.ijehe_1_18

Rights and Permissions
  Abstract 


Aims: This study was carried out to investigate the effect of predators' growth on biological excess sludge reduction of adsorption/bio-oxidation process (A/B process) as a modification of activated sludge system. Materials and Methods: The real municipal wastewater after screening and gritting was pumped into A/B pilot plant which consists of two aeration and sedimentation tanks in series. The hydraulic residence time for A and B stages was set at 1 and 4 h, respectively, at an average flow rate of 32 L/h. During operation, the mixed liquor suspended solids (MLSS) in A and B stages was gradually increased. In this period, the operational parameters including dissolved oxygen, pH, volatile suspended solids (VSS), MLSS, alkalinity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), phosphorus, nitrogen, and sludge volume index were monitored. Results: The results showed that with increasing solid retention time (SRT) from 0.6 to 56.8 days in Stage A, the biomass yield (Y) decreased from 1.29 to 0.23 g VSS/g COD. Similar results were observed in Stage B and correspondence to 67% reduction of Y as SRT increased from 1.6 to 123.8 days. During the A/B operation, overall tBOD5and tCOD removal was 70% ± 20% and 57% ± 24%, respectively. Conclusion: Based on the results, A/B process operation with high SRT led to predator growth enhancement and lower biological excess sludge production.

Keywords: Aquatic worm, predators, sludge reduction, solid retention time, two-stage activated sludge


How to cite this article:
Kheiri S, Taheri E, Rafiei N, Fatehizadeh A, Ghasemian M, Amin MM, Koushafar M, Mousavi SM. Biological excess sludge reduction in adsorption/bio-oxidation process by enhancing predators' growth. Int J Env Health Eng 2020;9:2

How to cite this URL:
Kheiri S, Taheri E, Rafiei N, Fatehizadeh A, Ghasemian M, Amin MM, Koushafar M, Mousavi SM. Biological excess sludge reduction in adsorption/bio-oxidation process by enhancing predators' growth. Int J Env Health Eng [serial online] 2020 [cited 2020 Oct 31];9:2. Available from: https://www.ijehe.org/text.asp?2020/9/1/2/285521




  Introduction Top


Activated sludge (AS) process is a frequent wastewater treatment plant (WWTP) for both industrial and municipal wastewater treatments.[1] In an AS process, the Y coefficient is about 0.4–0.6 volatile suspended solids (kg VSS)/chemical oxygen demand (kg COD),[2] thus a large amount of sludge is produced during organic matter oxidizing. On the other hand, legislations for sludge discharge to environment have been strengthened. The sludge mainly consists of water, and its conventional treatment process includes thickening, stabilization, and dewatering, which impose 50%–60% of the total costs on the WWTP operation costs.[3] A feasible and environmental-friendly method is highly desired to reduce excess sludge. In previous studies, different approaches to reduce excess sludge were investigated. Mainly, sludge reduction processes have been divided into two categories: (a) in-situ sludge reduction processes and (b) sludge post treatment. Comparing to posttreatment process, in-situ sludge reduction process has some advantages. In case of in-situ sludge reduction process, the minimization occurs by decreasing the yield of the sludge production.[4] The in-situ reduction treatment includes chemical and biological uncoupling metabolism (such as oxic-settling-anaerobic), maintenance metabolism, and predation.[5],[6]

Predation is one of the in-situ, biological approaches to reduce biological excess sludge. The primary consumers in wastewater treatment systems are bacteria, which themselves are consumed by higher organisms in food chain such as metazoa and protozoa. The worm predation is described as using microfauna to feed on microorganisms. Hence, to reduce biological excess sludge, inducing such organisms' growth can help.[7]

The present study was aimed to evaluate the presence and growth of predators on sludge reduction of adsorption/bio-oxidation (A/B process) fed by real wastewater from the North Isfahan WWTP.


  Materials and Methods Top


In this study, a two-stage AS (A/B process) with similar pattern as the North Isfahan WWTP (Isfahan, Iran) was implemented. The schematic of the studied A/B process is shown in [Figure 1], which was made by stainless steel.
Figure 1: Schematic diagram of the two-stage activated sludge pilot[8]

Click here to view


The influent was collected from real municipal wastewater after passing screening and gritting and then was pumped into the A/S process pilot at a flow rate of 30 L/h. The characteristics of the influent wastewater are summarized in [Table 1]. Before A/B process operation, in order to providing microbial consortium, the AS was extracted from Stages A and B of North Isfahan WWTP with mixed liquid suspended solid (MLSS) of 5264 and 4142 mg/L, respectively. After that, aeration was started, and the dissolved oxygen (DO) concentration was kept in the range of 0.5–1 mg/L in Tank A and 1–2 mg/L in Tank B.
Table 1: Characteristics of the de-gritted influent wastewater

Click here to view


The pilot was operated for 183 days. After 22 days of A/B process operation, the MLSS concentration reached to 3132 and 3500 mg/L in Tanks A and B, respectively. In order to enhance predator's growth and also to reduce the excess biological sludge, the solid retention time (SRT) was increased to higher than the North Isfahan WWTP. To SRT increment, the sludge withdrawal was avoided unless it was necessary.

Analysis

For A/B process performance monitoring, the influent and effluent wastewater were analyzed with respect to the operation period of DO, pH, temperature, VSS, MLSS, mixed liquor volatile suspended solids (MLVSS), alkalinity, biochemical oxygen demand (BOD5), COD, phosphorus, nitrogen, and sludge volume index (SVI). The analyses were accomplished according to the standard methods for water and wastewater examination.[9]

Calculation

The Y coefficient in A/B process was calculated by using equations (1) and (2):



where Yobs is observed biomass yield coefficient (gVSS/gCOD), Y is absolute biomass yield coefficient (g VSS/g COD), kd is death rate constant (d-1), and fd is residue mass (d-1).



where SRT is sludge retention time (days), MLVSS is mixed liquor volatile suspended solids of the reactor (mg/L), Vaeration is aeration tank volume (L), Xw is VSS of waste sludge (mg/L), Xe is VSS of effluent (mg/L), Qw is the flow of waste sludge (m3/day), and Qe is the flow rate of effluent (m3/day).



where Fw is waste sludge flow rate (m3/day), VSSw is VSS in waste sludge, Fef is the flow rate of effluent, VSSef is VSS in effluent, Fin is influent flow rate, and CODin and CODout are COD of influent and effluent wastewater, respectively.

Equations 1 and 3 were used to calculate sludge reduction.[6]


  Results Top


Variation of Y coefficient during adsorption/bio-oxidation process operation

Variation of Yobs, as a function of SRT, is shown in [Figure 2]. As depicted in [Figure 2], the operation A/B process with high SRT led to lower Yobs. With SRT increasing from 0.6 to 56.8 days in Tank A, the Y coefficient decreased from 1.29 to 0.23 g VSS/g COD and also reduced from 0.57 to 0.19 g VSS/g COD; in Stage B, as the SRT increased from 1.64 to 123.78 days, the biomass yield coefficient decreased. [Figure 3] illustrates the effect of SRT on excess sludge reduction during A/B process operation.
Figure 2: Variation of observed biomass yield in Tanks A and B during the pilot operation

Click here to view
Figure 3: Effect of solid retention time enhancement on excess sludge reduction

Click here to view


Microscopic observation

The A/B operation with higher SRT led to more predators' growth in sludge. In Stage A, as SRT increased up to 4 days, the Paramecium spp. was observed and maintained during the A/B process operation. By increasing SRT from 10 to 123 days in Stage B, the rotifers and Lumbriculus variegatus worms with 1 cm of length were seen. Paramecium and worm observed in Stage B of the A/B process are depicted in [Figure 4].
Figure 4: The paramecium and worm observed in the two-stage activated sludge pilot

Click here to view


Food-to-microorganism ratio variation

Variation of food to microorganism (F/M) ratio in A and B stages during the A/B process operation is depicted in [Figure 5]. The mean F/M in Tanks A and B was 0.62 ± 0.36 and 0.16 ± 0.2/day, respectively. As illustrated in [Figure 5], the steepness trend of F/M ratio as a function of SRT was observed in A and B stages.
Figure 5: Effect of solid retention time enhancement on food-to–microorganism ratio

Click here to view


Adsorption/bio-oxidation process performance

In biological wastewater treatment, the organic compounds were qualified with BOD5 and COD as indicators. In this study, the performance of A/B process with respect to BOD5 was monitored, and BOD5 variation during the A/B process operation is presented in [Figure 6]. As shown in [Figure 6], during 180 days of operation, the tBOD5 concentration ranged from 221 ± 118 to 114 ± 42 mg/L and also from 114 ± 42 to 61 ± 35 mg/L in Stages A and B, respectively. The removal efficiency of tBOD5 in Stages A and B was 45% ± 15% and 46% ± 23%, respectively. In addition, the overall tBOD5 removal efficiency A/B process was 70% ± 20%. Similarly, the same trend was observed in case of sBOD5. The average of effluents sBOD5 in A and B stages were 103 ± 53, 45 ± 26, and 22 ± 13 mg/L, respectively. The average of sBOD5 removal efficiency in Tanks A and B and the overall A/B process was 53% ± 19%, 47% ± 20%, and 76% ± 13%, respectively.
Figure 6: Pilot efficiency for tBOD5and sBOD5 removal. BOD: Biochemical oxygen demand

Click here to view


For the prediction of sludge-settling behavior, SVI was monitored. The SVI during the A/B process did not drastically change. The mean SVI in A and B stages was 62 ± 17 and 85 ± 30 mL/g, respectively. In order to calculate waste excess sludge during the A/B process, the quantification of suspended solids (SS) and volatile suspended solid (VSS) in returned AS is critical. During A/B process operation, the average of SS and VS in returned AS in Stage A was 16,000 ± 8900 and 10,635 ± 6200 mg/L and also in Stage B was 10,500 ± 7000 and 6700 ± 5200 mg/L, respectively. The VS/SS ratio is a vital parameter to evaluate AS quality. As monitored in the present study, the VS/SS ratio was 0.68 ± 0.12 and 0.66 ± 0.16 in A and B stages, respectively. Previous studies demonstrated that the VS/SS ratio for high-quality AS was higher than 0.75.[9] To assess the nutrient removal of A/B process during long-term operation, the total Kjeldahl nitrogen (TKN) and ammonia were selected. Overall, the average of TKN and ammonia removal was 92% and 88%, respectively.


  Discussion Top


For predators' growth enhancement and proliferation and also to reduce excess achieved sludge, the SRT was increased to much more than A/B process design criteria. As a result, the predators developed and Yobs decreased. The maximum excess sludge reduction in A and B stages of A/B process was 76% and 65%, respectively.

The operation of A/B process with higher SRT leads to lower Yobs, which means that sludge production is decreased.[10],[11] The obtained results showed that with increasing SRT, the predators' growth was intensified. Predators consume sludge flocs as food source and as a result, the dry mass of sludge is reduced and also a clarified effluent and a biomass full of protein are produced.[12]

Elissen reported that the operation of a reactor with fixed media led to Lytechinusvariegatus growth promotion and found 75% of the total suspended solid (TSS) removal efficiency for influent wastewater with 4000 mg/L of TSS.[13]

As depicted in [Figure 5], diminishing of the F/M was related to SRT increment. This behavior may be attributed to the accumulation of activated biomass in aeration tank and also the constant concentration of inlet substrate. When F/M ratio is <0.2, the bacteria's growth shifts to endogenous phase and leads to better settlement of sludge.[13]

The average of SVI in A and B stages was 62 ± 17 and 85 ± 30 mL/g, respectively. The result of SVI monitoring reflected improvement of sludge sedimentation properties with increasing SRT and growth promotion of predators. The direct relationship between SVI and sludge dewaterability was demonstrated in a previous study, which indicates that better settlement rate leads to a better dewatering rate.[11],[15]

The lower SVI in A stage presumably related to a small population of filamentous bacteria. In comparison to a conventional AS, the higher F/M ratios and lower DO concentration in A stage led to the act of aeration tank as a selector. As a result, the conditions are more suitable for floc forming organism growth than filamentous organisms.[12]


  Conclusion Top


In present study, the effect of predators' growth on biological excess sludge reduction of A/B process was studied. A/B process was consisted of two aeration and sedimentation tanks in series and feed with real municipal wastewater after screening and gritting. During A/B process operation, MLSS in aeration tanks was gradually increased and effluent wastewater subjected to DO, pH, VSS, MLSS, alkalinity, BOD5, COD, nutrient analysis. Based on the results, the following conclusion could be drowned.

  • By increasing SRT from 0.6 to 56.8 d in stage A, the Y coefficient was decreased from 1.29 to 0.23 g VSS/g COD.
  • In stage B, the SRT increasing from 1.6 to 123.8 d lead to 67% reduction of Y coefficient.
  • During the A/B operation, overall tBOD5 and tCOD removal was 70% ± 20% and 57% ± 24%, respectively.


Financial support and sponsorship

The present publication has been made possible through the financial, technical, administrative, and logistic support from Isfahan province Water and Wastewater Company under the grant No. 500/92/7208.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochem Eng J 2006;28:117-22.  Back to cited text no. 1
    
2.
Burton FL, Stensel HD, Tchobanoglous G. Wastewater Engineering: Treatment and Reuse. New York, USA: McGraw Hill, Metcalf, Eddy; 2003.  Back to cited text no. 2
    
3.
Elissen HJ, Hendrickx TL, Temmink H, Buisman CJ. A new reactor concept for sludge reduction using aquatic worms. Water Res 2006;40:3713-8.  Back to cited text no. 3
    
4.
Guo WQ, Yang SS, Xiang WS, Wang XJ, Ren NQ. Minimization of excess sludge production by in situ activated sludge treatment processes – A comprehensive review. Biotechnol Adv 2013;31:1386-96.  Back to cited text no. 4
    
5.
Khursheed A, Kazmi AA. Retrospective of ecological approaches to excess sludge reduction. Water Res 2011;45:4287-310.  Back to cited text no. 5
    
6.
Coma M, Rovira S, Canals J, Colprim J. Minimization of sludge production by a side-stream reactor under anoxic conditions in a pilot plant. Bioresour Technol 2013;129:229-35.  Back to cited text no. 6
    
7.
Ghyoot W, Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Water Res 2000;34:205-15.  Back to cited text no. 7
    
8.
Hadei M, Aalipour M, Fatehizadeh A, Safavi HR, Ghasemian M, Sahbaei AR, et al. Determination of biokinetic coefficients for an adsorption/bio-oxidation process on municipal wastewater in pilot-scale. Int J Env Health Eng 2015;4:35.  Back to cited text no. 8
  [Full text]  
9.
WEF, APHA. Standard methods for the examination of water and wastewater. 23rd Ed, American Public Health Association (APHA): Washington, DC, USA; 2017.   Back to cited text no. 9
    
10.
Fazeli S, Fatehizadeh A, Hassani A, Torabian A, Amin M. Evaluation of flat sheet membrane bioreactor efficiency for municipal wastewater treatment. Int J Environ Health Eng 2012;1:19.   Back to cited text no. 10
    
11.
Yang S, Yang F, Fu Z, Lei R. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresour Technol 2009;100:2369-74.   Back to cited text no. 11
    
12.
Marin-Hernandez J. Excess Sludge Reduction during Activated Sludge Municipal Wastewater Treatment by Integrating an Anoxic Holding Tank and Post-Ultrasound Treatment to Enhanced Biomass Maintenance Metabolism. Canada: University of Ottawa; 2012.   Back to cited text no. 12
    
13.
Elissen HJ. Sludge Reduction by Aquatic Worms in Wastewater Treatment: With Emphasis on the Potential Application of Lumbriculus variegatus; 2007.   Back to cited text no. 13
    
14.
Fouad M, Bhargava R. Sludge production and settleability in biofilm-activated sludge process. J Environ Eng 2005;131:417-24.  Back to cited text no. 14
    
15.
Amin MM, Taheri E, Ghasemian M, Puad NIM, Dehdashti B, Fatehizadeh A. Proposal of upgrading Isfahan north wastewater treatment plant: An adsorption/bio-oxidation process with emphasis on excess sludge reduction and nutrient removal. Journal of Cleaner Production. 2020;255:120247.  Back to cited text no. 15
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1]



 

Top
Previous article  Next article
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed610    
    Printed66    
    Emailed0    
    PDF Downloaded115    
    Comments [Add]    

Recommend this journal