Print this page Email this page
Users Online: 299
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 3  |  Issue : 1  |  Page : 1

Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing


1 Environment Research Center, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, IUMS, Isfahan, Iran
2 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
3 Department of Chemistry, University of Isfahan, Isfahan, Iran
4 Environment Research Center, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, IUMS, Isfahan; Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

Correspondence Address:
Fazel Mohammadi-Moghadam
Environment Research Center, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, IUMS, Isfahan; Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord
Iran
Login to access the Email id

Source of Support: Isfahan University of Medical Sciences, Conflict of Interest: None


DOI: 10.4103/2277-9183.131798

Rights and Permissions

Aims: The main objectives of this study were evaluation of the efficiencies of bioventing (BV), soil vapor extraction (SVE) and transition regime between BV and SVE (air injection bioventing [AIBV]) for benzene and toluene removal from polluted sandy soils. Materials and Methods: Laboratory-scale set-up consisted of three cylindrical units (with 29 cm in length with a 7.29 cm i.d.) was conducted to study the removal efficiency of three in-situ remediation technologies. Results: The results showed that, after 48-h air injection with constant air flow rate of 250 mL/min, benzene (initial concentration of 1 mg/g of soil) removal efficiency in BV, SVE and AIBV reactors were almost 84, 98 and >99.5%, respectively. Also results indicated that, toluene with a similar concentration was successfully (>99.5%) reduced via AIBV technology, after 72-h continuous air injection. Conclusion: Comparison of the BV, SVE and AIBV technologies indicated that all of those technologies are efficient for remediation of unsaturated zone, but after specific remediation time frames, only AIBV able to support guide line values and protect ground waters.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2805    
    Printed85    
    Emailed0    
    PDF Downloaded390    
    Comments [Add]    
    Cited by others 1    

Recommend this journal