Print this page Email this page
Users Online: 239
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 1  |  Page : 6

Treatment of compost leachate by ferro-sonication process: Effect of some operational variables


1 Nutritional Health Research Center, Lorestan University of Medical Sciences; Department of Environmental Health Engineering, School of Health and Nutrition, Khorramabad, Iran
2 Environment Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences; Department of Environmental Health Engineering, School of Health, Isfahan, Iran

Correspondence Address:
Bijan Bina
Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijehe.ijehe_12_17

Rights and Permissions

Aim: Application of composting process for the management of organic solid waste led to the production of leachate, which causes many problems to environment. This study was aimed at investigation of ferro-sonication (FS) process in composting leachate degradation. Materials and Methods: Leachate samples were collected in composting factory located in Isfahan. In each run, 400 ml of leachate was sonicationed through an ultrasonic homogenizer in a cylindrical glass reactor. Ferrous sulfate was added to the reactor as accelerator agent. The effect of various parameters including pH, ferrous sulfate doses, sonication times, and ultrasonic intensity was studied in the removal of chemical oxygen demand (COD) and biological oxygen demand (BOD) from composting leachate. Results: The results showed that the COD and BOD removal rate was increased by increasing ferrous sulfate dosages, sonication time, and ultrasonic intensity. In addition, lower pH was favored for leachate degradation. In general, the optimum conditions for pH, ferrous sulfate dosage, irradiation time, and ultrasonic intensity were 3, 8 mmol, 180 min, and 150 W, respectively. Approximately 46% of COD and 33% of BOD were removed in optimum condition. Conclusion: These results revealed that FS can be effective in degradation of compost leachate and can be presented as a good choice for pretreatment of leachate.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed536    
    Printed70    
    Emailed0    
    PDF Downloaded178    
    Comments [Add]    

Recommend this journal