Print this page Email this page
Users Online: 493
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 3  |  Issue : 1  |  Page : 13

Predicted sound absorption coefficients of absorber materials lined in a chamber


1 Department of Occupational Health Engineering, School of Public Health, Isfahan University of Medical Sciences, Isfahan; Department of Occupational Hygiene, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
2 Department of Occupational Hygiene, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
3 Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Correspondence Address:
Dr. Farhad Forouharmajd
Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: Isfahan University of Medical Sciences,, Conflict of Interest: None


DOI: 10.4103/2277-9183.132685

Rights and Permissions

Aims: The present study was aimed to measurement of sound absorption coefficient of mineral wool and determination of their absorption ability. Materials and Methods: Mineral wool was used to find noise absorption coefficient. Random and normal sound absorption coefficient values were predicted. Then, the measures of transmission loss calculated as an overall value, for applied absorbent material and bare sheet metal. Results: The measured values of noise with one octave band frequency demonstrated an attenuation of 5.5-7 dB for these frequencies. The absorption coefficients of materials showed that mineral wool had more normal sound coefficients than its random sound absorption coefficient values. Conclusion: It can be concluded that predicted normal sound absorption coefficients of used mineral wool materials were near to the areas of standard line. It seems that the amount or thickness of absorbent lining was a main reason of noise reduction in low band frequencies. Mineral wool has a higher density and can provide better acoustical and insulating results than fiberglass. Besides, mineral wool doesn't lose its insulating value when wet and has an outstanding resistance to fire.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4111    
    Printed81    
    Emailed0    
    PDF Downloaded428    
    Comments [Add]    

Recommend this journal